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The problem of free-molecular flow in the gap between two plane parallel walls is 
reduced to solving the Poisson equation with an anisotropic tensor of transmis- 
sion coefficients. 

The problem of free-molecular transfer in a gap between two parallel surfaces arises in 
investigating the operation of vacuum cryogenic -- and, in particular, multilayer - insula- 
tion. In view of the well-known analogy [l], the results obtained may also be used in con- 
sidering radiant transfer. 

In studying molecular transfer in long channels, the quasidiffusional approximation pro- 
posed in [2] is widely used. This method may be generalized to the problem of transfer in a 
narrow gap between parallel surfaces [3]. In the present work, various representations of 
the transmission tensor - the two-dimensional analog of the "diffusion" coefficient for long 
channels -- are introduced and compared. 

I. Formulation of the Problem 

Consider a steady free-molecular flow in the gap between two plane parallel walls, each 
of which occupies a region S bounded by contour L on the plane. 

It is assumed that diffuse emission is possible at the walls, while the reflection of 
the molecules from the walls is diffusional in character. At the side surface of the gap, 
i.e., at a cylindrical surface with directrix L and generatrices perpendicular to the walls, 
a diffuse flux density Q is incident from outside; Q depends on the position of the point on 
the contour and is homogeneous over the height of the gap. 

The problem of determining the effective fluxes at the walls qj~) (j = I, 2, y E S) 
and the two-dimensional vector G of the mass flux density in the gap under the given assump- 
tions reduces [3] to solving the integral equations 

u (y) = I K (y, y') u (y') dS v, + L'f Ko (Y, Y') Q (y')dLy, + u*, ( l )  

v(y) = - -  ~K(y, y') v(y')dSy, + v*, (2) 
s 

where 

u = q ~ + q ~ ;  v = q , - - q l ;  u * = q ~ q - - q ~ ;  v * = q ~ - - q ~ ;  
h 2 h 2 (n, y '  - -  

K(y,  y ' ) =  ; Ko(y, y ' ) =  
[h~ + (y _ y,~l 2 ~ [h~ + (y _ Z)21 (y _ y,)~ (3) 

The vector G, averaged over the height of the gap, is expressed in terms of the function u(y) 
by means of the formula 

- -  . h d L ~ , .  (4)  
G = 2 ~" ~ [h2 + (y _ y,)21 (y _ y,)Z = "IY - -  Y't' 

L 

2. Various Representations of the 

Transmlssion-Coefficient Tensor 

Numerical solution of Eqs. (1) and (2) is simple. Only in the Case of a small gap (h << 
d, d is the characteristic dimension of region S) does the kernel K(y, y') become almost 
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~-like, which makes numerical solution with acceptable accuracy difficult. However, the 
almost local character of the integral operator when h << d also offers the possibility of 
replacing the problem by a considerably simpler version, permitting analytical solution in 
a number of cases. 

Thus, let h<< d. In this case, the approximate solution v ~ = v*/2 may be written at 
once for Eq. (2), giving a discrepancy of the order of h2/d 2 after substituting into Eq. (2). 
It is simple to show, by means of Taylor-series expansion of the unknown function, that at a 
sufficiently large distance from the contour L in region S, Eq. (I) may be replaced by the 
following differential equation with an accuracy up to terms of order 0(ha/d 2) 

hZdiv(H.)gradu) = ~ u * ,  (5) 

where 

I I [cos z ,f~(,) d ,  ~ [ s in ,  cos,f, (,) d ,  [ 

H ~ ~  1 2~ 1 ~ ~ (6) 
1"-'~-- ~ siN* Cos *[1 (*)d, ~ f sin2,[1 (,) d,[ 
~z~ o Z~ o 1; 

[1(*) = ~  in 1 + - - ~  h z --? a z �9 

It may now be noted that differential Eq. (5) may be obtained from the mass-conservation 
law, which takes the form 

h d i v G = u * .  (7) 

Since the kernel of Eq. (4) is equivalent to the gradient of a two-dimensional ~ func- 
tion as h + 0, it may be shown that at a sufficient distance from the contour L with an 
accuracy up to small-order terms O(h2/d 2) 

G = --hflC2~gradu, (8) 

where 

2~ 2~ 

W2 , = o o (9) 

2~ 2~ 

s in ,  cos ,f~ (,) d ,  ~ ]; 

0 0 

(,) = 1 In [I -1- a2/h~). 
2 

Note that the difference in the corresponding components of the tensors h'H(I) and h*H (*) is 
of order O(ha/d=). 

With an error of the same order of smallness, the coefficient tensor may be replaced by 
an isotropic and homogeneous tensor 

(o) lnd/h 0 
H~s~ = �9 ( l 0) 

�9 ~ In d/h 

Equat ion (8) resembles the Fick law G = --D grad p. The resemblance i s  p u r e l y  e x t e r n a l ,  
however. In fact, the tensor hH (2) differs in dimensionality from the tensor of diffusion 
coefficients D, and is a geometric characteristic of the region. The tensor K(a) (a = I, 2, 
3) will be called the tensor of transmission coefficients, and the approximation correspon- 
ding to Eq. (8) will be said to be quasidiffusional. For long channels, this approximation 
was first co~sSdered in [2] Below, the accuracy of the results obtained for various repre- 
sentation H ka) (~ = i, 2, 3) of the transmission-coefficient tensor is compared. 

To derive the zero solution of Eq. (5), the boundary condition on contour L must be 
specified. This condition may be obtained from integral Eq. (I) by Taylor-series expansion 
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of the function u in the vicinity of point Yo lying on contour L 

where 

du 1 
On (Y0) = -if-  [(--u (Y0) + 2 Q (Y0)) (I + • + 2u'l, 

X = 

h 
If Yo 

2 R (y0)' 

0 , if Yo 

Is a polar of coavexlty of contour I. 

Is a polnt of coaeavlty of conto~tr.L. 

(11) 

Thus, the problem of quasidiffusional approximation reduces to solving the Poisson 
equation 

- -  h 2 div (H (~) grad u) = u* ( 1 2 )  

i n  t he  r e g i o n  S w i t h  t h e  b o u n d a r y  c o n d i t i o n  o f  Eq. (11)  on c o n t o u r  L. Knowing u ,  and a s s u m -  
i n g  that v = v ~ it is simple to determine the effective fluxes at the walls and also the 
mass flux G inside region S from Eq. (8). The expression for G at points on contour L may 
be obtained from Eq. (4) by means of Taylor-series expansion of the unknown function u 

1 . . . .  ~=~ Ou nl - -  Q (yo), (13)  
G~ (Y0) = - ~ -  u tY0) - -  n u , h  (Y0) Ox'---~ 

where  H (a)  a r e  t he  c o m p o n e n t s  o f  t h e  t e n s o r  H (a )  (a = ! 2 3 ) ;  n i a r e  t he  componen t s  o f  t h e  
i k  ' ' 

v e c t o r  n ;  summat ion  f r o m  1 t o  2 i s  u n d e r s t o o d  o v e r  t h e  r e p e a t i n g  s u b s c r i p t s  i ,  k .  

. Error Estimate 
^ 

Let u be the solution of integral Eq. (1) and u the solution of differential Eg. (5) 
To simplify the estimates, the tensor K(a} will be with the boundary condition in Eq. (II). 

considered in representation ~(3) 

The function u satisfies Eq. (5)�9 with the discrepancy w(y) 

hZl-lAu = - -  u* + w, ( 1 4 )  

where H = (I/2) In(d/h); A is a two-dimensional Laplacian. 
^ 

Taylor-series expansion of u in the integrand of Eq. (I) in the vicinity of the point y 
yields the form of the function w(y) 

The absolute error A u 

2~ 

�9 h 2 ~ (u (y) - -  2Q (~)) d ~ + h  2 o &  (y) 1 
m (y) ~ h = q- a 2 (~) Oz 2~ 

0 

a(~) + 1 a=, ,na ) d ~ + h  z (Y) 2= • cos ~ h z + a z (~) h 
0 

2 ~  

x s i n ~  - - h ~  "-t-a ~(~) h" - h 
o 

= f i -  u s a t i s f i e s  t h e  e q u a t i o n  

and the boundary condition 

(15) 

h21]A (Au) = W (16)  

solution A u of Eqs. 
Then 

h ~ + A~ C1 + • = 2p p (yo)~h'- - ~  . 

(16)  and  (17)  i s  e x p r e s s e d  i n  t e rms  o f  i t s  G r e e n ' s  f u n c t i o n  g ( y ,  y ' ) .  

The region S is divided into the boundary zone S and So = S\S. 

' f  A=(Y)=  // hZll . - -  P (Yn) g (Yo, Y) dLy.  w (y') g (y' ,  y) dSu,. 

L $ 

Region S is of width 

( 1 7 )  

(18) 
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~ m i n  R(yo). The error will be estimated for points sufficiently far from the boundary of 
YoeL 

t h e  r e g i o n ,  i . e . ,  f o r  y~  6 So. The second  i n t e g r a l  i n  Eq. (18) i s  d i v i d e d  i n t o  two i n t e g r a l s :  
w i t h  r e s p e c t  t o  So and S. 

, f  The i n t e g r a l  II=.-h~ ~ w ( y ' ) g ( y ' ,  y)dSy, i s  now e s t i m a t e d .  I t  fo l ] .ows f rom Eq. (15) f o r  

So 

Y'  6 So that w(y") ~ h 2 max l~ul~nl. 
L 

It may also be shown that sos g(Y' y')dSy' is finite as 

h + 0. Thus 

"-i I Ou 

Under the  g i v e n  a s s u m p t i o n s ,  t h e  i n t e g r a l  

l 

/, = I w (y') g (y', y) gSy, ~ ~ w (x) g (x, y) 8x. 
h2H 

0 

The boundary condition for the Green's function g(yV, y) takes the form 

As follows from Eq. (20), IsN-- 

(19) 

h 0~ (0, y) + g(0, y)(l + x) = 0. (20) 

I 

L m(x)(x+h)dx. To estimate w(x) close to the boundary, 
h~H . 

0 

Eq. (15) is used, replacing the integral over the contour L by an integral over the adjacent 
vicinity. It may be shown that the error resulting from this substitution is no more than 
O((h/d) 2 in (h/d)). The corresponding calculations give the result 

A ~ I I - '  maxl Ou I.  (21) 
" L J O n l  

I t  may now be n o t e d  t h a t  t he  f i r s t  t e r m  i n  Eq. (18) i s  o f  o r d e r  h max 18u/Sn I .  I t  f o l l o w s  
L 

f rom Eqs.  ( 1 8 ) ,  ( 1 9 ) ,  and (21) t h a t  Au(Y) ~ ~-x max [3u/Sn I f o r  y 6 So. The r e l a t i v e  e r r o r  
L 

~u in determining the function u is 

^ 

The error in determining the function v is now estimated. Let v be the solution of 
integral Eq. (2). Then the absolute error &v = v-- (v*/2) satisfies the integral equation 

Ao -5 Av(y')K(y, y')SS#, = ~-- 1 -- K(y, y')dS#, . (22) 

S S 

Taylor-series expansion of Av(y' ) in the integrand in the vicinity of point y shows that far 
from the boundary 

2x 

A~(y)= Ao(y)-r-~- ~ Iz 2+a~(,) Ox 4~ 
o 

2~ 2~ 

• cos~ \hZ+a2(~) - ~  Og aa(~) + a(~) d~. (23) 
0 0 

I t  may be c o n c l u d e d  f rom Eq. (23) t h a t  t he  r e l a t i v e  e r r o r  i n  d e t e r m i n i n g  t h e  f u n c t i o n  v i s  
6v = a v ( d  max Ig r ad  v l )  -1 = O ( h 2 / d 2 ) .  

So 

I t  f o l l o w s  f rom Eq. (3) t h a t  t he  r e l a t i v e  e r r o r  i n  d e t e r m i n i n g  t h e  e f f e c t i v e  f l u x e s  ql  
and q2 i s  o f  o r d e r  q - * .  The e r r o r  in  d e t e r m i n i n g  the  mass f l u x e s  in  t h e  gap i s  e s t i m a t e d  
a n a l o g o u s l y .  I t  i s  a l s o  found h e r e  t h a t  t h e  r e l a t i v e  e r r o r  i s  o f  t h e  o r d e r  o f  ~-* 
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Fig. I. Dependence of the values of the transmission coeffi- 
cient on the dimensionless ratio x/Z for an infinite strip. 

Fig. 2. Dependence of the dimensionless effective flux on 
the ratio r/Ra for an annular gap with u* ~ 0. 

4. Particular Case of a Gap between Two 

Annular Disks 

As an example, consider the gap between two annular disks. The region S is described 
by the conditions RI < r < Ra, 0~.~2a in the polar coordinates (r, ~). The quantities 
qj depend solely on r, and the fluxes Qx ffi QlrfR, and Q2 = QIr=Ra are constant. Assuming 
that R2 = Rx + l, r = R, + x, and letting Rx tend to infinity, an infinite strip bounded by 
the two straight lines x = 0 and x = I is obtained as the region S, in the limit. It is 
obvious that Qx = Qlx=o and Qa = Qlx=l. The effective flux densities qj and the function u 
are then constant over the whole length of the strip and depend only on the coordinate x. 

Since the coordinate axes in the given problem are the principal axes of the transmis- 
sion tensor ~(a), only the components ~(a) and E(a) are nonzero. In view of the one- 

11 22 

dimensionality of the problem, the only quantities which a role here are ~(a) ffi ~), play 

which are functions of a single coordinate. 

For an annular gap, the transmission coefficients take the form 

where 

Ri RI 

__'r _'; II ~l~ (r) = -~ - .  (r - -  rl)ZK, (r, r,) drx, II ~z' (r) = 2rh2 (r - -  rl) V (r, r,) drt, 
R, Rt 

H"' = 1___ ~a R,-- R1, 
2 h 

4rl (h z ,a_ r 2 Jr r~) aretan Z q- A B  (AZ2 -t- B) K1 (r, rO = (AB)312 

V(r, rO= rt [ -rzq-r~+hg ( V F ~  - ) ( rq-rl ) ]  aretan Z -~aretan ~ Z  ; 
r (AB) t /9  r - -  r x 

r I / ' -~ - -R~  q-  r l  ] / ' r  2 - - R ~  
A = h z -k (r + r,)2; B = h z + (r - -  rOZ; Z = " R ,  (r + r l)  " " 

(24) 

The general form of the solution for an annular gap is 

i u* f' r'dr' c dr' 
U (r) = 2 h  i -  J II(~)CP ) + T r 'nc~ (r') 

Rt Rt 

The boundary condition in Eq. (I I) for Eq. (25) takes the form 

+b. (25) 
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Fig. 3. Dependence of the probability WI on the dimension- 
less magnitude of the gap. 

Fig. 4. Dependence of the relative error in determining the 
effective flux on the dimensionless magnitude of the gap. 

Or T (u(R~)--2Q2) 1 +  h 

In the limiting case of an infinite strip, the transmission coefficients are taken in 
the form 

1 [ V ' h 2 + ( t - x ) ' §  
I Im (x) = - ~ -  In V--h 2 + x 2 - - x  

1 [ V h  a + ( l - x )  z + l - - x  
II~2~ (x) = ~ In V h ~ + x~-- x 

l - - x  
Vh ~ + (t -- X)~ 

l - - x  
l/hZ-p-(l--x) ~ + l -- x 

x ] 
Vh2 + x~ 

x ] 
V W - 4  x~+ x ' 

(26) 

(27) 

iICS~= 1 In(l /h) .  
2 

The g e n e r a l  s o l u t i o n  o f  Eq. (12) t a k e s  the  f o l l o w i n g  form i n  the  c a s e  o f  an i n f i n i t e  s t r i p  

u* ; x'dx' c i dx' 
u(x)= h~ iir +--iV W~(x,  ) ~b. (28) 

0 0 

The bounda ry  c o n d i t i o n  i n  Eq. (11) then  t a k e s  the  fo rm 

Ou (0)-- 1 Ou + 
- -  O-"-~ -s -~-x (/) = , ~  [--tt(l)'t-2O2+2tt*], (29) 

s i n c e  the  r a d i u s  o f  c u r v a t u r e  o f  c o n t o u r  L i s  i n f i n i t e  i n  t h i s  c a s e .  The bounda ry  c o n d i t i o n s  
i n  Eqs .  (26) and (29) o f f e r  t he  p o s s i b i l i t y  o f  d e t e r m i n i n g  the  c o n s t a n t s  c and b i n  Eqs.  (25) 
and (28 ) .  

Knowing u and Gn, q u a n t i t i e s  c h a r a c t e r i z i n g  the  c o n d u c t i o n  o f  the  a n n u l a r  gap may be 
found :  t h e  p r o b a b i l i t i e s  t h a t  a f l u x  i n c i d e n t  on the  e x t e r n a l  and i n t e r n a l  c y l i n d r i c a l  s u r -  
f a c e ,  r e s p e c t i v e l y ,  w i l I  p a s s  t h r o u g h  the  c h a n n e l  

Wx= R1Gn(R~) for u* = 0 ,  Q i =  O, (30) 
R2Q2 

W2 = R~G,~ (R2) for u* = 0, Q2 = 0, (31 ) 
RIQI  

and also the probabilities that the emitted flux will exit through the internal and external 
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TABLE I. Values of the Ratio q(r)/Q, when q* = 0, Q2 = 0, 
RI/R2 = 0.5, h/R2 = 0.01 

Ratio r/P~ 
Numerical solution of in- 

tegral equation 
Analytical solution of 

boundary problem for 
----- !IO') 
.(cO - H(~) =H(2) 

Same, for H(=)=II(~) 

0,5 

O, 957 

0,954. 
0,9"50 
O, 972 

O, 625 

0,628 

0,648 
0,634 
0,654 

0,75 0,875 

0,397 0,205 

O, 425 
O, 409 
0,412 

0,230 
0,217 
O, 198 

1,0 

0,020 

0,021 
0,021 
0,014 

cylindrical surface, respectively, 

2RIhG~(RO 

W* 2R~hG.(R~) 

Note that W~ + W~ = I. 

for QI=Q2 = O, (32) 

for QI = Q2 = O. (33) 

In the limiting case of an infinite strip, WI = W2 and W~ = W~ = 0.5 
in view of the symmetry of the region. Hence, for an infinite strip, it is reasonable to 
introduce a single quantity W, the probability that the flux incident on the surface x = 0 
from outside will pass through the gap: 

W =  Gn(0 for u * = 0 ,  Q2=0.  (34) 
QI 

5.  R e s u l t s  o f  N u m e r i c a l  C o m p a r i s o n  

I n  t h e  c a s e  o f  a gap  b e t w e e n  two a n n u l a r  d i s k s ,  and  i n  t h e  l i m i t i n g  c a s e  o f  an  i n f i n i t e  
s t r i p ,  a n u m e r i c a l  s o l u t i o n  o f  i n t e g r a l  Eq.  (1)  h a s  b e e n  f o u n d  by  t h e  K r y l o v - B o g o l y u b o v  
method [4]. The accuracy with which it approximates the analytical solution of the problem 
of the quasidiffusional approximation is compared for three different transmission coeffi- 
cients K (~) . The continuous curves in Figs. I-4 show the numerical solution and the dashed 
curves the analytical solution. The numbers on the curve correspond to a ffi I, 2, 3. 

Numerical solution offers the possibility, in particular, of determining the dependence 
of the transmission coefficient given by Eq. (8) on the coordinate. This dependence is 
shown in Fig. l in comparison with the functions K(~). As is evident from Fig. I, the best 
approximation to the numerical value of the transmission coefficient is given by N(s) on 
average and by ~(2).at the edges of the region. Values of the effective flux are given in 
Fig. 2 and Table I. The coefficient H(2) gives the best approximation-in both the case u* = 
0 and the case u*=~ 0. 

The probabilities that the flow will pass through the annular gap defined in Eq. (30) 
are shown in Fig. 3 as a function of h. It is evident that the value of W, is most accurately 
approximated by the analytical result when H ffi H(2), if h is not very small. However, when 
h/d~. 0.02, transmission coefficient 9( I ) gives the best approximation. For the probability 
W I defined in Eq. (32), 9 (2) and ~(a)give equally good results (no more than 2-3% error). 

Values of the error in calculating the effective flux in an annular gap for different 
forms of the transmission tensor are shown in Fig. 4. In this case, the smallest error when 
h/d ~ 0.07 corresponds to the approximation with transmission coefficient 9( 2 ) and when h/d~ 
0.07 to 9(3). The relative error is no more than 3% here. Note that, although the overall 
estimate of the error-- (6q % (in(d/h))-*) -- is not very optimistic, an error that is per- 
fectly acceptable for practical purposes is obtained even at relatively small values of In 
d/h. 

NOTATION 

a(~), distance from point y to contour L in the direction forming an angle ~ + ~ with 
the 0x axis; b, c, arbitrary constants; D, diffusion coefficient; d, characteristic dimension 
of region; G, two-dimensional mass-flux-density vector along the gap; g(y, y'), Green's func- 
tion; h, distance between the walls of the gap; L, contour of the region S; ~, width of infi- 
nite strip; n, unit vector normal to contour L; Q, QI, Q2, flux densities incident from 
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outside; ql, q=, effective flux densities at walls; q~, q~, densities of emitted fluxes at 

walls; R(yo), radius of curvature of contour L at point Yo; R~, R2, internal and external 
radii of annular gap; r, coordinate; S, two-dimensional region; u = q~ + q2, v = q2 -- q~; 
W~, W2, probabilities that a flux incident respectively on the externaland internal cylin- 

, W* probabilities that the emitted flux will drical surface will pass through the gap; W~ 2, 
exit through the internal and external cylindrical surface, respectively; w, discrepancy in 
the equation; x, coordinate; y, point of region S; A, Laplacian; Au, Av, absolute errors; 
~u, ~v, relative errors; ~(~), transmission-coefficient tensor. Indices: ~, number of the 
representation for the transmission coefficient; j, number of gap wall. 
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NEW APPROXIMATE ANALYTIC METHODS OF INVESTIGATING 

PROBLEMS OF PHYSICOCHEMICAL MECHANICS 

A. D. Polyanin and V. V. Dil'man UDC 5 1 8 . 1 2 : 5 4 1 . 1  

New approximate analytic methods are suggested for investigating problems of 
physicochemical mechanics. Specific examples are provided, illustrating the 
use of these methods. 

I. Asymptotic Correction Method. Various engineering equations, obtained empirically 
or by approximate solution of the corresponding (boundary-value) problems, are often used in 
practice. The validity region of these equations is usually restricted, and is separately 
established in each specific case. Below we suggest a simple universal method of substantial 
improvement of the approximate engineering equations, based on using the exact asymptotic of 
the original boundary-value problem. 

Let the unknown quantity S be obtained by the approximate expression 

s = s ( k ,  P), (1) 
which  u s u a l l y  r e f l e c t s  t he  q u a l i t a t i v e  b e h a v i o r  o f  S as a f u n c t i o n  o f  the  change i n  the  domi-  
n a n t  p a r a m e t e r s  o f  t h e  p r o b l e m  k and P ( h e r e  and l a t e r  i t  i s  assumed f o r  s i m p l i c i t y  t h a t  
t h e r e  a r e  two such  p a r a m e t e r s ) .  Le t  t he  main t e rms  o f  the  a s y m p t o t i c  a p p r o x i m a t e  e x p r e s s i o n  
(1) be in  the  l i m i t i n g  c a s e s  k + ~ (P = c o n s t )  and P + ~ (k = c o n s t )  

Sh~, (2) S -~ S ~ p ; P-+ oo, S -+ * 

s~p = s~p (k, P)~ s L  = s L  (k, P) (3) 

( i n s t e a d  o f  (2) one can c o n s i d e r  any o t h e r  l i m i t i n g  c a s e s ;  s ee  the  s p e c i f i c  examples  p r o v i d e d  
b e l o w ) .  

I f  s i m i l a r  e x a c t  a s y m p t o t i c  s o l u t i o n s  o f  t he  o r i g i n a l  p r o b l e m  a r e  known 

k-+c~, S--~S~p; P-~oo, S--*Sh~, (4) 

t he  a p p r o x i m a t e  Eq. ( l )  can be improved  by t h e  f o l l o w i n g  s i m p l e  method .  I n  e x p r e s s i o n  (3) we 
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